Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2305944121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252845

RESUMO

Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics. We addressed this issue by analyzing expert-provided data on long-term biodiversity change (last three decades) over 14 biosphere reserves from the Mesoamerican Biodiversity Hotspot. Using multivariate analyses and structural equation modeling, we tested the influence of major socioeconomic drivers (demographic, economic, and political factors), spatial indicators of human activities (agriculture expansion and road extension), and forest landscape modifications (forest loss and isolation) as drivers of biodiversity change. We uncovered a significant proliferation of disturbance-tolerant guilds and the loss or decline of disturbance-sensitive guilds within reserves causing a "winner and loser" species replacement over time. Guild change was directly related to forest spatial changes promoted by the expansion of agriculture and roads within reserves. High human population density and low nonfarming occupation were identified as the main underlying drivers of biodiversity change. Our findings suggest that to mitigate anthropogenic threats to biodiversity within biosphere reserves, fostering human population well-being via sustainable, nonfarming livelihood opportunities around reserves is imperative.


Assuntos
Biodiversidade , Ecossistema , Humanos , Animais , Agricultura , Animais Selvagens , Mudança Climática
2.
PLoS One ; 19(1): e0295230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170723

RESUMO

The mountain forests of Middle America are renowned for their endemic biodiversity, and arboreal alligator lizards (genus Abronia) are high-profile vertebrates endemic to this region. In this work, we describe a new species of arboreal Abronia that is known only from the type locality in the Northern Highlands of Chiapas, Mexico. The new species is diagnosed from all other members of the genus Abronia by the following combination of characters: lack of protuberant or spine-like supra-auricular scales, lack of protuberant or casque-like posterolateral head scales, dorsum of head pale yellow with distinct dark markings, 35-39 transverse dorsal scale rows, lateralmost row of ventral scales enlarged relative to adjacent medial row, and dorsum brown with darker crossbands that are sometimes reduced to rows of spots. We provisionally include the new species in the subgenus Lissabronia based on genomic and morphological evidence, but our results also suggest a close relationship to the subgenus Abaculabronia. The new species is geographically separated from the nearest Lissabronia and Abaculabronia species by the lowland Central Depression of Chiapas. Ongoing habitat loss and other factors imperil the new species, leading us to propose its listing under multiple threatened species frameworks. Because the Northern Highlands have poor coverage of protected areas, we briefly comment on the potential of this new species for stimulating conservation in the region.


Assuntos
Lagartos , Árvores , Animais , México , Distribuição Animal , Estruturas Animais/anatomia & histologia , Serpentes , Ecossistema , Lagartos/anatomia & histologia , Filogenia
3.
Zookeys ; 1102: 149-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761155

RESUMO

Based on examination of most of the existing museum specimens of the rare bufonid frog Inciliustacanensis, we present a redescription and new diagnosis for this species. The species is limited to small region of the Pacific chain of volcanoes in southeastern Chiapas, Mexico, and adjacent areas of Guatemala. The species has not been observed in the wild since 1984 and may have been reduced or eliminated by regional epidemics of chytridiomycosis.


ResumenBasándonos en la revisión de la mayoría de los especímenes de museo existentes del raro sapo bufónido Inciliustacanensis, presentamos una redescripción y una nueva diagnosis para esta especie. La especie se limita a una pequeña región de la cadena de volcanes del Pacífico en el sureste de Chiapas, México, y áreas adyacentes de Guatemala. La especie no se ha observado en la naturaleza desde 1984 y puede haber sido reducida o eliminada por epidemias regionales de quitridiomicosis.

4.
BMC Evol Biol ; 12: 255, 2012 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-23273329

RESUMO

BACKGROUND: The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton) using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. RESULTS: Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. CONCLUSIONS: Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B. nympha, in contrast to the other widespread species in the subgenus, may be due to historical forest contraction and more recent range expansion in the region. Phylogeographic data provide substantial insight into the evolutionary history of these morphologically similar species of salamanders, and contribute to our understanding of factors that have generated the high biodiversity of Mesoamerica.


Assuntos
Evolução Molecular , Variação Genética , Filogenia , Urodelos/genética , Análise de Variância , Animais , Núcleo Celular/genética , Citocromos b/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Geografia , Guatemala , Haplótipos , Honduras , México , Dados de Sequência Molecular , Pró-Opiomelanocortina/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo , Clima Tropical , Urodelos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...